AN APPLICATION OF SET THEORY
TO MODEL THEORY*

BY
MARK NADEL

ABSTRACT

We give a number of simple proofs of results in model theory using the set
theoretical result of Lévy that H(yx) is a Z-submodel of the Universe.

The results presented in this paper were noticed by the author during the early
part of 1970, and are scattered throughout [6]. We collect these results together
here because of their common nature and the common nature of their proofs.
All the proofs are simple and use only a few facts, especially a result originally
set down by Lévy [4]. In addition, we feel the first two results are of sufficient
mode] theoretic interest in their own right.

In section 1, we list the facts we will need to get the results of section 2, 3 and 4.
We will not attempt to derive them here, but recommend that the reader consult
[5]or[6]if more than our briefexplanations are desired. The original presentation
of the now standard syntactical hierarcy of formulas of set theory is found in [4].

1. We will work with the infinitary language £, ,, which allows the conjunction
and disjunction of arbitrary sets of formulas, but only quantification over finitely
many variables at a time. Some of our results will have immediate extensions to
richer languages, and others, perhaps not so immediate extensions. Extending the
results will essentially amount to extending the properties we mention below.
In any event, we leave these extensions entirely to the reader.

We pause to introduce a little notation. By a language, we will more accurately

mean the symbols of a language. We will usually denote languages by script £,
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We will use script .# and A" as names for structures. M willdenote the domain of
. Wedenotethe set of all k-tuples of elements of M, fork e w,by M, and individ-
ual k-tuples by m, petc. We write & =g, A tomean that 4 and A satisfythe
same sentences of £ _,. When the particular & involved is either clear or
unimportant, we usually abbreviate with &4 = ., 4#". We write /4 =g A to
mean that .# and A4 satisfy the same formulas of &, of quantifier rank no more
than «, where « is an ordinal. For m, _pfe IVI, by m ~‘,f5 we mean that
(M,m)="% (M, D) in the language with the appropriate number of symbols
added.

We will denote cardinals with either u or A, and H(u) will be the set of all sets
of power hereditarily less than y, i.e., whose transitive closures have power less
than g 3,2 is defined inductively by 2:(A)=4Uw, 3,.:(4) =2"® and
25(A) = U< 35(4) if 6 is a limit ordinal.

For our purposes the set of Ay-formulas of set theory contains the atomic
formulas and is closed under the Boolean operations and bounded quantification.
The set of Z-formulas includes the A,-formulas and is closed under existentia
quantification, as well as conjunction, disjunction and bounded quantification.
The II-formulas are obtained in an analogous fashion using universal quantifi-
cation. The negation of a E-formula is provably equivalent to a II-formula, and
vice versa. A class is said to be & (IT) if it can be defined by a Z-formula (TI-
formula) using parameters. A class which is both Z and II is said to be A. In
our setting, recursive definitions in terms of A classes define A classes.

Here are the properties we will use. We will not list the conditions for the
““universe’’ under which these properties hold but will merely assure the reader
that they hold in the cases we consider.

I) The relation ‘. k@[m]’, of the variables #, ¢, and m, where /4 is a
structure, ¢ is a formula of £, and me Mis (uniformly) X.

This fact follows immediately from the inductive character of the definition of
satisfaction, which even gives A-definability.

1) A =,,A is a Z-relation.

Here we may use either the so-called ““back-and forth property”” of Karp, (cf.
[1]) or a Chang canonical Scott sentence (cf. [2]). We note that =, is obviously

I as well.
I0) If # and A" are countable, then & =, A" iff 4 and A" are isomorphic.
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This is well-known and needs no explanation here cf. [2].

All the above is exploited with the help of

IV) For each cardinal u, H(u) < XV, i.e.,for any X-formula ¢ of set theory
and any k-tuple @ of elements of H(u), {H(u), e ) F$[a]iff ¢[a].

This is, of course, the result of Lévy’s to which we referred earlier.

2. Let S be a class of formulas of & _,. By .#(S)4" we mean that for each
seatence ¢ €S, if A k¢, then A k. In [2] Chang proved if 4 and A" have
cardinality less than p, then (SN2, )4 implies #(S)A", where S could be
taken to be all formulas, all existential formulas, or all positive formulas of
Z - The above three classes are all of a very simple syntactical nature, and can
be defined using only bounded quantifiers. We noticed that these three results are
instances of a general result which has the added benefit of a uniform proof,
Before beginning, we make a few simple observations.

Let .4 be a structure whose domain M has at most u elements. Since there are
at most 2* relations and functions on M, we may as well assume that the language
& for . has no more than 2* symbols. In fact, we may assume that M e H(u*),
and that % < H(u'), and even further that the mapping of the symbols of & to
their interpretations in .# is A on H(u'). We call such a structure an H(u*)-
structure, and as we have just observed, every structure whose domain has power
at most p is essentially isomorphic to an H(u™*)-structure. Hence, when we state a
theorem for H(u*)-structures, there is no loss of generality. In this setting, for a
fixed ., the class of ¢ €%, , such that # F¢, is A on H(u*). We now state
the result.

THEOREM 1. Let # and A" be H(u*)-structures for a language & and
suppose that S is a -subclass of formulas of &, defined with parameters from
H(u*). Then, if #4(SNEL,,)N, M(S)N .

Proor. We think of S, .#, and A" as their respective definition. Since S is I,
it follows from Lévy’s theorem that S~ H(u*) is the same as S relativized to
H(p*). Now we merely put down the following IT statement which expresses our
hypothesis. (H(u*),e) F*“V¢[¢ is a sentence in S—[A# Ed— A FP]]".
Using Lévy’s theorem once again, the statement
*) “V¢ [pisasentenceinS—[ M Fdp—> AN Fo]]”
lifts to the “‘real’” universe. This statement is not exactly what we want..# and.A#"
being classes and not merely elements, may be “‘blown up” in the real world
interpretation. However, the domains remain the same and the original relations
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remain unchanged since these were elements of H(u*). The only possible al-
teration would be some additional symbols in the langnage and additional cor-
responding relations and functions. These additions clearly have no effect on the
satisfaction of formulas of &, since the reduct of .# as evaluated in the universe
to.Z, is the original structure .#, where, of course, by £ we mean the original set
of symbols and not the possibly inflated set we might get by using the definition
of &# in the universe. It is clear now that (*) is even stronger than our hypothesis
and our proof is complete.

We could of course have phrased Theorem 1 more generally in terms of
arbitrary E-submodels. The three special cases given in {2] can even be shown to
hold in an arbitrary admissible set.

3. Roughly speaking, by a functional we will mean a definable mapping from
ndexed collections of structures to structures. Is there some very simple sufficient
condition under which the functional will preserve ““=_,”” ?Very reasonable
conditions have been given in both [3] and [7]. We will suggest some other very
simple conditions which, with a trivial proof, will yield a preservation theorem.
The three sets of conditions presented in [3], [7] and below appear to be pairwise
incomparable with respect to generality. We proceed with some definitions.

It will streamline our notation considerably in this sectionif by # =_ A we
mean that there is some language ¢ which is the appropriate language for both
# and A" and that /4 =, 4. Since the appropriate language can be obtained
from the structure in A, way, no increase in complexity is involved.

DerINITION 3.1. By a sequence of structures we mean a function whose domain
is some ordinal and whose range is a set of structures (not necessarily for the same
language).

DEFINITION 3.2. A functional is a mapping defined on some subclass of
sequences of structures which takes on structures as values.

DEeFINITION 3.3. A functional F preserves =, (isomorphism) iff whenever i
and j are in the domain of F and have some ordinal « as their common domain,
and if for each B<a, i(f)=,,j(B) (i(B) and j(B) are isomorphic), then,
F(i)= ., F(j) (F(i) and F(j) are isomorphic).

We can now state

THEOREM 2. Suppose F is a functional which

(i) preserves isomorphism when restricted to countable sequences of countable
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structures for countable languages in its domain, and which is
(i) X-definable with parameters from H(w,).
Then F preserves = .

Proor. The conclusion of the theorem is that
“Vi,j,a, M, A[[domain i = domain j A VB < a(i(B) = »ui(B)) A
Fi)=MNF(=H]> M=, N]"

holds.

If we write down the above, expressing the first occurrence of “=""__ ina X
way, i.e., we use fact (I), and the second occurrence in the obvious IT way, then
by using (ii) above, we see that we have a IT expression.

If we look at this statement restricted to H(w,), then, by using fact III, we see
that we may replace both occurrences of ** = _,,’’ by isomorphism. Hypothesis (i)
above then assures us that the statement holds on H(w,). An application of
(IV), Lévy’s theorem, finishes the proof.

Condition (i) in the hypothesis of the theorem is, of course, no restriction
whatsoever. Condition (ii), on the other hand, is a strong restriction. In particular
it implies that F does not increase cardinality, Therefore, while one can show that
weak direct product will be a X functional, full cartesian product cannot be
though it does preserve *“ =’ .. Other examples of E-functionals include sums
and products of linear orderings, taking commutative rings to quotient fields or
polynomial rings, taking commutative groups to their subgroups of torsion
elements, etc,

Consider all structures with one binary relation satisfying the axiom of ex-
tensionality and the functionals taking these structures to their well-founded
parts or their non-well-founded parts. These functionals are X-definable, so by
Theorem 2, if two extensional structures are =, then both their well-founded
parts and non-well-founded parts are = _,. The second functional does not seem
to fit the description of [ 7]. Neither s it a u-local functor in the sense of [ 3] since it
does not preserve =, for arbitrary ordinals .

Before ending this section we must mention that Theorem 2 could be seen from
the following even more set-theoretical viewpoint.

Go to a Boolean-valued universe in which everything involved is countable
and hence isomorphic. To be sure that (i) is true in this new universe, use
Schoenfield’s absoluteness lemma (together with facts IT and IIT above). Now,
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isomorphism in the Boolean extension guarantees * =’ in the original universe,

and we are done.

4. Given a sentence ¢ of £, one of two sitnations may be true: either ¢ has,
up to =, a set of models, or ¢ has a proper class of models which are not
= ... In the first case, we say that ¢ tapers off. In [8] the following is established.

THEOREM  Let & have at most u symbols, where u is a regular cardinal.
Let ¢ be a sentence of £,+,,. Suppose, up to = ,,, there are at most y models of
¢ of cardinality p. Then ¢ tapers off. In fact, every model of ¢ is = _, to a model

of cardinality at most p.

This result is easily proved using the result of Lévy’s. We now state another
result in this direction with a weaker hypothesis.

THEOREM 3. Let u be a cardinal and let o < p be an ordinal. Let ¥ have at
most A symbols, where A < u, and let ¢ be a sentence of Z,,. Suppose that for
any model M of ¢ of power less than p there is a B <o such that, for any
m, 55]’7{, m ~ﬂ§ implies m ~g+1:§7. Then ¢ tapers off. In fact, there are, up
t0 =, at most 3,4 (4) models of ¢, and every model of ¢ is =, to a structure

of power < 3,(4).

Proor. As before, we assume that our language % is an element of H(y). Our
hypothesis then insures that

CH(p),ey E“NM[M Fd—[IP<a[Vim, peM[m~yp—>i~y, p]]]].
It is well known that for each structure .#, each k-tuple me M and ordinal §,
there is a formula (l)_, «(weusually omit the subscript #), which is T in .#,
m and f,such that for evety pe M, M E (b" a[p]-m~gp.
Tt is now clear that above we have a IL: statement about {H(u),s», and so, by
Levy’s theorem, for any model 4 of ¢,'there is an ordinal § < « such that for all

M, peM, m~zp— i~z p. It is also well known that for any structure ./,
the sentence “@% Axecome iml V015" v,‘(¢”2—>¢,§f1 )]’, where

Vm,peM[m~zp—>m~y,p]
is a Scott sentence for ./, i.e., characterizes .# up to = ,,. We now have merely

to count up all the possible Scott sentences of the above form where g is the
minimal ordinal such that ¥ m, pe K/I(};z ~5}3 -m ~ﬁ+1§).
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It can be shown by a straight forward induction argument that for every ordinal
y, structure ., and m e M, ¢:_n. lies in H(3,(A)*).

Itis then clear from this last observation and our hypothesis that each canonical
Scott sentence lies in H( 234 4(4)*) for some f < a. Adding everything up we find
that every canonical Scott sentence is in U;.,H(13;.,(A)*) and so there are at
most Xy, 35, 2(4) £ 3,,,(4) such Scott sentences.

A direct application of the downward Lowenheim-Skolem theorem for %,
finishes the proof. 4

Though the result given above is in general the best possible, it is obvious that
if o is a limit ordinal, our proof gives a bound of 3,(2) models. 4

As a final note, the analogous result to Theorem 3 for pseudo elementary classes
in %, is established exactly as above.

5. To remind the reader that our primary concern is with our method and not
our specific results, we outline the essential aspects involved.

First we consider the proposed result from a set-theoretic point of view and
analyze the complexity of the statements. Often, purely modeltheoretic facts come
into play at this stage to reduce the complexity.

If we reach the level of formula simplicity we need, we then apply the set
theoretical result we have in mind. In this paper we depend entirely on Lévy’s
theorem. To get other results we could use, for example, theorems of a descriptive
set theoretical nature. We might use the fact that X-subsets of H(w,) have car-
dinality less than or equal to w, or equal to the continuum to get Morley’s result
on the number of countable models of a countable theory. The familiar fact that
Borel sets of reals have power continuum or are countable gives us the result that
countable structures for countable languages have either continuum many or
countably many automorphisms,which was previously shown by model theoretical
means. The analogous result for analytic sets allows us to say that a countable
theory in.%,,,, has either continuum or countably many countable homogeneous
models up to isomorphism,

As part of the method, especially when we are interested in the number of
models up to isomorphism or =, etc., we must usually count canonical Scott
sentences or some analogous object, instead of the models themselves, so that we
do not count equivalent models more then once.

We hope that extensions and refinements of this general approach will prove
fruitful in dealing with a variety of questions in ‘“‘hard”’ model theory.
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