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ABSTRACT 

We give a number of simple proofs of results in model theory using the set 
theoretical result of L6vy that H(p) is a ~-submodel of the Universe. 

The results presented in this paper were noticed by the author during the early 

part of  1970, and are scattered throughout I-6]. We collect these results together 

here because of  their common nature and the common nature of their proofs. 

All the proofs are simple and use only a few facts, especially a result originally 

set down by L~vy [4]. In addition, we feel the first two results are of  sufficient 

model theoretic interest in their own right. 

In section 1, we list the facts we will need to get the results of  section 2, 3 and 4. 

We will not attempt to derive them here, but recommend that the reader consult 

[5] or [6] if  more than our brief explanations are desired. The original presentation 

of  the now standard syntactical hierarcy of formulas of  set theory is found in [4]. 

1. We will work with the infinitary language La~,o, which allows the conjunction 

and disjunction of  arbitrary sets of formulas, but only quantification over finitely 

many variables at a time. Some of  our results will have immediate extensions to 

richer languages, and others, perhaps not so immediate extensions. Extending the 

results will essentially amount to extending the properties we mention below. 

In any event, we leave these extensions entirely to the reader. 

We pause to introduce a little notation. By a language, we will more accurately 

mean the symbols o f  a language. We will usually denote languages by script ~e. 
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Received December 7, 1971 and in revised form February 14, 1972 

386 



Vol. 11, 1972 MODEL THEORY 387 

We will use script ~ '  and .A p as names for structures. M will denote the domain of  

.~'. We denote the set of  all k-tuples of  elements of M, for k ~ co, b-~ M, and individ- 

ual k-tuples by 7n, p'etc. W e write . / / /=  ~,o- / f f  to mean that ~ and eft satisfy the 

same sentences of  ~o~,o. When the particular La involved is either clear or 

unimportant,  we usually abbreviate with .//{---oo<ovff. We write d / =  ~o, vff to 

mean that .~' and d satisfy the same formulas of~o,~ of quantifier rank no more 

than c~, where c~ is an ordinal. For r~, ~ M ,  by m ~~.~ we mean that 

(./~/, ~n)= ~o,(~',~) in the language with the appropriate number of  symbols 

added. 

We will denote cardinals with either/x or 2, and H(~t) will be the set of  all sets 

of  power hereditarily less than/ t ,  i.e., whose transitive closures have power less 

than #. '~(2) is defined inductively by ~ o ( 2 ) = ) . u o ) ,  ~ + 1 ( 2 ) =  2 Lt~) and 

"~(2) = up<~ za(2) if 3 is a limit ordinal. 

For our purposes the set of  Ao-formulas of  set theory contains the atomic 

formulas and is closed under the Boolean operations and bounded quantification. 

The set o f  Z-formulas includes the Ao-formulas and is closed under existentia 

quantification, as well as conjunction, disjunction and bounded quantification. 

The U-formulas are obtained in art analogous fashion using universal quantifi- 

cation. The negation of  a X-formula is provably equivalent to a 1-I-formula, and 

vice versa. A class is said to be Z (II)  if it can be defined by a Z, formula (1-I- 

formula) using parameters. A class which is both Z and II is said to be A. In 

our setting, recursive definitions in terms of  A classes define A classes. 

Here are the properties we will use. We will not list the conditions for the 

"universe" under which these properties hold but will merely assure the reader 

that they hold in the cases we consider. 

I) The relation %r ~ ~b[r~]', of  the variables ~ ' ,  q$, and r~, where ,,r162 is a 

structure, ~b is a formula of  Laoo,o, and ~ s M is (uniformly) IL 

This fact follows immediately from the inductive character of  the definition of  

satisfaction, which even gives A-definability. 

II) Jr = ~,,A/" is a Z-relation. 

Here we may use either the so-called "back-and forth property" of  Karp, (cf. 

[1]) or a Chang canonical Scott sentence (of. [2]). We note that _-- ~,o is obviously 

II as well, 

III) If  de' and JV" are countable, then ~ - | dip iff ~ '  and X are isomorphic. 
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This is well-known and needs no explanation here cf. [2]. 

All the above is exploited with the help of  
IV) For each cardinal /L, H(#) < ~ V, i.e.,for any E-formula ~b of set theory 

and any k-tuple ~ of  elements of H(#), (H(/a), e ) ~ q5 [5] iff ~b[a]. 

This is, of  course, the result of  L6vy's to which we referred earlier. 

2. Let S be a class of  formulas ofLa~,  o. By .//r we mean that for each 

sentence ~b ~ S, i f  ./# ~ ~b, then .A/" ~ ~b. In [2] Chang proved if  ./r .A r have 

cardinality less than #, then Jt '(S n ~~ implies ..r where S could be 

taken to be all formulas, all existential formulas, or all positive formulas of  

~o~,o. The above three classes are all of a very simple syntactical nature, and can 

be defined using only bounded quantifiers. We noticed that these three results are 

instances of  a general result which has the added benefit of  a uniform proof. 

Before beginning, we make a few simple observations. 

Let ~ be a structure whose domain M has at most p elements. Since there are 

at most 2 ~ relations and functions on M, we may as well assume that the language 

s for  ~ '  has no more than 2 u symbols. In fact, we may assume that M ~ H(#+), 

and t h a t ~  c H(#+), and even further that the mapping of  the symbols o f ~  to 

their interpretations in .////is A on H(#+). We call such a structure an H(/z+)- 

structure, and as we have just observed, every structure whose domain has power 

at most/~ is essentially isomorphic to an H(/~+)-structure. Hence, when we state a 

theorem for H(#+)-structures, there is no loss of  generality. In this setting, for a 

fixed ,//g, the class of  ~ ~s such that d// ~ qS, is A on H(#+). We now state 

the result. 

THEOREM 1. Let ~ and JV" be H(p+)-structures for a language ~ and 

suppose that S is a F.-subclass of formulas of .~eoo,o defined with parameters from 

H(It+). Then, if Jg(S t~uo,)Jf f  , d//(S),4C 

PROOF. We think of  S, rig, and ./g" as their respective definition. Since S is I~, 

it follows from L6vy's theorem that S n H(/~ +) is the same as S relativized to 

H(#+). Now we merely put down the following H statement which expresses our 

hypothesis. (H(p+),e) ~"V~b[q5 is a sentence in S~[,//r  ~q~,A/" ~b ] ] " .  

Using L6vy's theorem once again, the statement 

(*) "Vq5 [q~ is a sentence in S --* [J#  ~ q~ ~ ~V" ~ q~]]" 

lifts to the " rea l "  universe. This statement is not exactly what we want.,///and,/g" 

being classes and not merely elements, may be "blown up"  in the real world 

interpretation. However, the domains remain the same and the original relations 
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remain unchanged since these were elements of H(#+). The only possible al- 

teration would be some additional symbols in the language and additional cor- 

responding relations and functions. These additions clearly have no effect on the 

satisfaction of  formulas of-~'~o,, since the reduct of s///as evaluated in the universe 

t o L  ~a, is the original structure de', where, of  course, byL, e we mean the original set 

of symbols and not the possibly inflated set we might get by using the definition 

o f ~  in the universe. It is clear now that (*) is even stronger than our hypothesis 

and our proof  is complete. 

We could of course have phrased Theorem 1 more generally in terms of 

arbitrary 12-submodels. The three special cases given in [2] can even be shown to 

hold in an arbitrary admissible set. 

3. Roughly speaking, by a functional we will mean a definable mapping from 

ndexed collections of structures to structures. Is there some very simple sufficient 

condition under which the functional will preserve " - ~ o , " ? V e r y  reasonable 

conditions have been given in both [3] and [-7]. We will suggest some other very 

simple conditions which, with a trivial proof, will yield a preservation theorem. 

The three sets of  conditions presented in [3], I-7] and below appear to be pairwise 

incomparable with respect to generality. We proceed with some definitions. 

It will streamline our notation considerably in this section if  by d i -  ~,ouff we 

mean that there is some language L~' which is the appropriate language for both 

de' and sff and that ~ '  - ~ ,oJff .  Since the appropriate language can be obtained 

from the structure in A o way, no increase in complexity is involved. 

DEFINITION 3.1. By a sequence of structures we mean a function whose domain 

is some ordinal and whose range is a set of structures (not necessarily for the same 

language). 

DEFINITION 3.2. A functional is a mapping defined on some subclass of 

sequences of  structures which takes on structures as values. 

DEFINITION 3.3. A functional F preserves - o~o, (isomorphism) iff whenever i 

and j are in the domain of F and have some ordinal ~ as their common domain, 

and if  for each fl < c~, i(fl)-oo,oj(fl) (i(fl) and j(fl) are isomorphic), then, 

F( i ) -~o ,F ( j )  (F(i) and F(j) are isomorphic). 

We can now state 

THEOREM 2. Suppose F is a functional which 

(i) preserves isomorphism when restricted to countable sequences of countable 
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structures for countable languages in its domain, and which is 

(ii) r,-definable with parameters from H(t~l). 

Then F preserves - ~ .  

PROOF. The conclusion of  the theorem is that 

"Vi, j ,~,  ~ ' ,A/ ' [ [domain  i -- domain j / k  Vfl < ~(i(fl) -oo~j(fl)) A 

F(i) = .A[/k F(j) = ,W'] ~ ~g =- ~,~C-l"j 

holds. 

I f  we write down the above, expressing the first occurrence of  " - ~,o in a 

way, i.e., we use fact (II), and the second occurrence in the obvious II  way, then 

by using (ii) above, we see that we have a II expression. 

I f  we look at this statement restricted to H(o~l), then, by using fact III, we see 

that we may replace both occurrences o f "  - oo~" by isomorphism. Hypothesis (i) 

above then assures us that the statement holds on H(ah). An application o f  

(IV), L6vy's theorem, finishes the proof,  q 

Condition (i) in the hypothesis of  the theorem is, o f  course, no restriction 

whatsoever. Condition (ii), on the other  hand, is a strong restriction. In particular 

it implies that F does not increase cardinality. Therefore,  while one can show that 

weak direct product  will be a ~ functional, full cartesian product cannot be 

though it does preserve " - " ~ .  Other examples of  ~-functionals include sums 

and products of  linear orderings, taking commutative rings to quotient fields or 

polynomial rings, taking commutative groups to their subgroups of  torsion 

elements, etc. 

Consider all structures with one binary relation satisfying the axiom of  ex- 

tensionality and the functionals taking these structures to their well-founded 

parts or their non-well-founded parts. These functionals areZ-definable, so by 

Theorem 2, if  two extensional structures are - o~,~ then both their well-founded 

parts and non-well-founded parts are - o~o,. The second functional does not  seem 

to fit the description of  [7]. Neither is it a #-local functor in the sense of  [-3] since it 

does not preserve = - ~ ~,~ for arbitrary ordinals ~. 

Before ending this section we must mention that Theorem 2 could be seen from 

the following even more set-theoretical viewpoint. 

Go to a Boolean-valued universe in which everything involved is countable 

and hence isomorphic. To be sure that (i) is true in this new universe, use 

Schoenfield's absoluteness lemma (together with facts II and III above). Now, 
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isomorphism in the Boolean extension guarantees ' = '~oo, in the original universe, 

and we are done. 

4. Given a sentence if of~r one of two situations may be true: either if has, 

up to --- o~,o, a set of models, or if has a proper class of  models which are not 

- ~oo,. In the first case, we say that if tapers off. In [8] the following is established. 

THEOREM Let ~ have at most p symbols, where It is a regular cardinal. 

Let r be a sentence of~LP~+o,. Suppose, up to - ooo, there are at most p models of 

if of cardinality #. Then q~ tapers off. In fact,  every model of if is =--| to a model 

of cardinality at most It. 

This result is easily proved using the result of L6vy's. We now state another 

result in this direction with a weaker hypothesis. 

THEOREM 3. Let It be a cardinal and let c~ < # be an ordinal. Let ~ have at 

most 2 symbols, where )~ < It, and let if be a sentence of C~.r Suppose that for 

any model , g  of if of power less than It there is a fl < ct such that, for any 

~n, p ~ - I ,  ~n~'Bp implies ~n ,,.~+l~p. Then if tapers qff'. In fact,  there are, up 

to =- ~ , ,  at most ~+~(2) models of if, and every model of if is -o~,~ to a structure 

of power < "~(2). 

PROOF. As before, we assume that our language ~ is an element of H(it). Our 

hypothesis then insures that 

if < ?-, ~p, ,To] ] ] ] .  

It is well known that for each structure ~ ' ,  each k-tuple rn~ M and ordinal fl, 

there is a formula if~ ~ (we usually omit the subscript ~ ' ) ,  which is X; in d~', 

a and fl,such that for every/~e M, ~ ~ i f~  ~ [p ]  ~ 7n "~3 .  

It is now clear that above we have a lI~statement about <H(It),e>, and so, by 

Levy's theorem, for any model dCL of  if..'there is an ordinal fl < ~ such that for all 

~ ,  ~ei~I, ~ , - -~ /~  ~ ,-,a+,/~. It is also well known that for any structure ,# ,  

the sentence ~ ' 4 , / X k ~ o , ~ k ' ~ l ,  " " , O k ( i f  m 0 ifmfl. +1 )]" ,  where 

is a Scott sentence for d//, i.e., characterizes d/t' up to -- ~o,. We now have merely 

to count up all the possible Scott sentences of  the above form where fl is the 

minimal ordinal such that V 7n, ? ~ ~/(Tn ~ a ?  -~ 7n ,-,p +l ?)- 
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It can be shown by a straight forward induction argument that for every ordinal 

7, structure d/l, and ~ ~ M, ~b,~ lies in H('~(2)+). 

It is then clear from this last observation and our hypothesis that each canonical 

Scott sentence lies in H( "~p+ 2(2) +) for some fl < ~. Adding everything up we find 

that every canonical Scott sentence is in U~<~H('~a+l(2) +) and so there are at 

most Xp<~ "~p+2().) __< "~+1(2) such Scott sentences. 

A direct application of the downward Lowenheim-Skolem theorem for ~ o ,  

finishes the proof, q 

Though the result given above is in general the best possible, it is obvious that, 

if ~ is a limit ordinal, our proof gives a bound of'h(2) models, q 

As a final note, the analogous result to Theorem 3 for pseudo elementary classes 

in 0o~r is established exactly as above. 

5. To remind the reader that our primary concern is with our method and not 

our specific results, we outline the essential aspects involved. 

First we consider the proposed result from a set-theoretic point of view and 

analyze the complexity of the statements. Often, purely model theoretic facts come 

into play at this stage to reduce the complexity. 

If  we reach the level of formula simplicity we need, we then apply the set 

theoretical result we have in mind. In this paper we depend entirely on L6vy's 

theorem. To get other results we could use, for example, theorems of a descriptive 

set theoretical nature. We might use the fact that X-subsets of H(co0 have car- 

dinality less than or equal to co t or equal to the continuum to get Morley's result 

on the number of countable models of a countable theory. The familiar fact that 

Borel sets of reals have power continuum or are countable gives us the result that 

countable structures for countable languages have either continuum many or 

countably many automorphisms,which was previously shown by model theoretical 

means. The analogous result for analytic sets allows us to say that a countable 

theory in L,r , has either continuum or countably many countable homogeneous 

models up to isomorphism. 

As part of the method, especially when we are interested in the number of 

models up to isomorphism or -oo,o, etc., we must usually count canonical Scott 

sentences or some analogous object, instead of the models themselves, so that we 

do not count equivalent models more then once. 

We hope that extensions and refinements of this general approach will prove 

fruitful in dealing with a variety of questions in "hard"  model theory. 



Vol. 11, 1972 MODEL THEORY 393 

REFERENCES 

1. J. BARWISE, Back and forth thru infinitary logic, Studies in Model Theory, M. A. A., to 
appear. 

2. C. C. CrIANO, Some remarks on the model theory of  infinatry languages, Lecture Notes in 
Mathematics, 72, Springer Verlag, Berlin, 1968. 

3. S. FEFERMAN, Infinitary properties, local fanctors and systems of ordinal functions, to 
appear. 

4. A. L~vY, A hierarchy of  formulas in set theory, Mere. Amer. Math. Soc., No. 57 (1965). 

5. M. NADEL, Model theory in admissible sets, to appear. 

6. M. NADEL, Model theory in admissible sets, Dissertatiorl, University of Wisconsin, I971. 

7. L.T. OLLMANN, Operators on models, Dissertation, Cornell, 1970. 

8. S. SHELAH, On the number of  non-almost isomorphic models of  T in a power, to appear. 

LOUISIANA STATE UNIVERSITY 
BATON ROUGE, LOUISIANA 


